1. <ruby id="li44o"></ruby>

      1. <rt id="li44o"><optgroup id="li44o"></optgroup></rt><cite id="li44o"><span id="li44o"></span></cite>
         TGMRC  News  Directory  Research Programs  Training Programs  Research Outcomes  Alumni & Friends  How to Apply 
        當前位置: TGMRC>>Research Programs>>Conference>>正文
        The weak Galerkin finite element method for eigenvalue problems
        2020-08-13 15:54  

        時間: 8月13日8點   騰訊會議: 594112238

        Abstract: This talk is devoted to studying eigenvalue problem by the weak Galerkin (WG) finite element method with an emphasis on obtaining lower bounds. The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions. As such it is more robust and flexible in solving eigenvalue problems since it finds eigenvalue as a min-max of Rayleigh quotient in a larger finite element space. We demonstrate that the WG methods can achieve arbitrary high order convergence.This is in contrast with classical nonconforming finite element methods which can only provide the lower bound approximation by linear elements with only the second order convergence. Numerical results are presented to demonstrate the efficiency and accuracy of the WG method.

        張然,理學博士,教授,博士生導師。國家天元數學東北中心執行副主任,國務院政府特殊津貼獲得者,吉林大學數學學院黨委書記,主持國家自然科學基金多項,科研獲獎多項。主要從事非標準有限元方法、隨機微分方程數值解、多尺度分析及應用、金融衍生產品的數值計算等課題研究。在包括計算數學領域的重要期刊《SIAM J Numerical Analysis》、《SIAM J Scientific Computing》、《Mathematics of Computation》、《IMA J Numerical Analysis》上發表學術論文50余篇。



        Three Gorges Math Research Center  443002, Yichang, Hubei